All Issue

2019 Vol.21, Issue 2 Preview Page

March 2019. pp. 227-242
Abstract


References
1 

Beale, M.H., Hagan, M.T., Demuth, H.B. (2016), Neural network toolbox™ user's guide, version R2016a, The Math Works, Inc., Natick.

2 

Box, G.E.P., Jenkins, G.M. (1970), Time series analysis: forecasting and control, Holden-Day, San Francisco.

3 

Buduma, N., Locascio, N. (2017), Fundamentals of deep learning: designing next-generation machine intelligence algorithms (1st edition), O'Reilly Media, Sebastopol.

4 

Chung, H., Lee, I.M., Jung, J.H., Park, J. (2019), "Bayesian networks-based shield TBM risk management system: methodology development and application", KSCE Journal of Civil Engineering, Vol. 23, No. 1, pp. 452-465.

10.1007/s12205-018-0912-y
5 

Dorffner, G. (1996), "Neural networks for time series processing", Neural Network World, Vol. 6, No. 4, pp. 447-468.

6 

Han, H.Y. (2009), Pattern recognition, Hanbit Media, Inc., Seoul.

7 

Hassoun, M.H. (1995), Fundamentals of artificial neural networks, MIT Press, Cambridge.

8 

IBM Corp. (2016), IBM SPSS Forecasting 24, IBM Corp., New York.

PMC4957675
9 

Jung, J.H., Chung, H., Kim, T.H., Lee, I.M. (2018). "A hybrid time series model to predict ground conditions ahead of tunnel face utilizing shield TBM operational data", Tunnelling and Underground Space Technology, Under Review.

10 

Kim, P. (2017), MATLAB deep learning: with machine learning, neural networks and artificial intelligence, Apress, New York, p. 53-80.

10.1007/978-1-4842-2845-6_3
11 

Kim, S.P. (2016), Deep learning for beginners, Hanbit Media, Inc., Seoul.

12 

Kim, T.H., Kwon, Y.S., Chung, H., Lee, I.M. (2018), "A simple test method to evaluate workability of conditioned soil used for EPB Shield TBM", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 6, pp. 1049-1060.

13 

Lee, I.M. (2016), Geotechnical aspects of tunnelling (3rd edition), CIR, Seoul, pp. 129-176.

14 

Lee, W.W. (2011), Time series analysis: Statistical method for predicting, Freedom Academy Inc., Paju.

15 

Patterson, D.W. (1995), Artificial neural networks: theory and applications, Springer, New York, pp. 1-179.

16 

Ripley, B.D. (1996), Pattern recognition and neural networks, Cambridge University Press, New York.

10.1017/CBO9780511812651
17 

Shin, C.H., Jeong, S.H. (2011), "A study on application of ARIMA and neural networks for time series forecasting of port traffic", Journal of Navigation and Port Research, Vol. 35, No. 1, pp. 83-91.

10.5394/KINPR.2011.35.1.83
18 

Taylor, K. (2017), Deep learning using MATLAB neural network applications, CreateSpace Independent Publishing Platform, Lavergne.

19 

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J. (1989), "Phoneme recognition using time delay neural networks", IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 3, pp. 328-339.

10.1109/29.21701
20 

Zumsteg, R., Langmaack, L. (2017), "Mechanized tunneling in soft soils: choice of excavation mode and application of soil-conditioning additives in glacial deposits", Engineering, Vol. 3, No. 6, pp. 863-870.

10.1016/j.eng.2017.11.006
Information
  • Publisher :Korean Tunneling and Underground Space Association
  • Publisher(Ko) :한국터널지하공간학회
  • Journal Title :Journal of Korean Tunnelling and Underground Space Association
  • Journal Title(Ko) :한국터널지하공간학회 논문집
  • Volume : 21
  • No :2
  • Pages :227-242
  • Received Date :2018. 12. 19
  • Revised Date :2019. 01. 16
  • Accepted Date : 2019. 01. 24